العضو المميز الموضوع المميز المشرف المميز
المنتدى متاح للتصفح فقط ولا يقبل المشاركات الجديدة ماشاء الله تبارك الله ماشاء الله لاقوة الا بالله المنتدى متاح للتصفح فقط ولا يقبل المشاركات الجديدة

آخر 10 مشاركات
كتب الرياضيات العربية (الكاتـب : - - الوقت: 07:41 PM - التاريخ: 05-03-2013)           »          أتيتكم ببشرى خاصه بتلميذتكم منتداي العزيز :) (الكاتـب : - آخر مشاركة : - - الوقت: 11:02 PM - التاريخ: 06-07-2012)           »          كيف نحسب بعد الأرض عن الشمس بالرياضيات (الكاتـب : - - الوقت: 05:50 AM - التاريخ: 25-06-2012)           »          تجريب اللاتيك LaTex (الكاتـب : - - الوقت: 02:37 AM - التاريخ: 22-06-2012)           »          أخلاق المسلمين (الكاتـب : - آخر مشاركة : - - الوقت: 11:57 AM - التاريخ: 20-05-2012)           »          مسألة محددات أرجو المساعدة في حلها (الكاتـب : - - الوقت: 07:52 PM - التاريخ: 16-05-2012)           »          طريقة جميله لإيجاد قيمة اللوغاريتم بدون حاسبة (الكاتـب : - آخر مشاركة : - - الوقت: 02:59 AM - التاريخ: 16-05-2012)           »          كتاب قيم عن مسابقات الأولمبياد (الكاتـب : - آخر مشاركة : - - الوقت: 01:33 AM - التاريخ: 04-12-2009)           »          س 6 : اتصال (الكاتـب : - آخر مشاركة : - - الوقت: 11:39 PM - التاريخ: 03-12-2009)           »          امتحانات + الحل للثانوية العامة - مصر - 2008 (الكاتـب : - آخر مشاركة : - - الوقت: 11:25 PM - التاريخ: 03-12-2009)


العودة   منتديات الرياضيات العربية سـاحة الرياضيات اللامنهجية المسابقات الدورية في المنتدى المسابقة الرياضية(1)
التعليمـــات قائمة الأعضاء التقويم Files Upload Center الراديو

البث الإذاعي الحي Join WebHost4Life.com موقع بلّغوا


 
   
أدوات الموضوع انواع عرض الموضوع
قديم 18-12-2006, 08:04 PM   رقم المشاركة : 1
مدير المنتدى
 
الصورة الرمزية uaemath

من مواضيعه :
0 مسائل خفيفة ذات نتائج عظيمة (3)
0 مسائل ذات أفكار غريبة ( 2 )
0 مسابقة أجمل حل : السؤال الأول
0 نجوم المنتدى - يوليو 2009
0 مسابقة أجمل حل : س4






uaemath غير متصل

uaemath is on a distinguished road

شكراً: 1,441
تم شكره 752 مرة في 288 مشاركة

افتراضي المسابقة الرياضية(1)-السؤال19


السؤال التاسع عشر من لجنـة الحـكـم

مثلث قائم الزاوية جميع أضلاعه أعداد صحيحة و أقصر ضلع فيه طوله 2001

أوجد أقصر طول للضلع الأخر (غير الوتر)


بالتوفيق للجميع

 

 







التوقيع

لا إله إلا أنت سبحانك إني كنت من الظالمين
لا تنسوا الضغط على هذا الرابط لمساعدة المشاريع التربوية في الدول الفقيرة:ساعد الأخرين | موقع رياضيات الإمارات|تعلم إدراج الرموز
إذا لم يظهر لك مدرج الرموز عند وضعك مشاركة أسفل الصفحة ، عليك تحميل و تنصيب الجافا :حمل من هنا

هناك قوانين جديدة للمنتديات ،اقرأها حتى لا تتعرض مواضيعك للحذف : اضغط هنا

قديم 18-12-2006, 08:58 PM   رقم المشاركة : 2
عضو شرف
 
الصورة الرمزية استاذ الرياضيات

من مواضيعه :
0 القسمة بطريقة هورنر
0 سؤال طريقة فيرما
0 تجربة
0 شرح:إيجاد طول العمودالساقط من نقطةعلى مستقيم
0 معادلات الدرجة الأولى بثلاث مجاهيل






استاذ الرياضيات غير متصل

استاذ الرياضيات is on a distinguished road

شكراً: 472
تم شكره 337 مرة في 185 مشاركة

افتراضي


السلام عليكم ورحمة الله وبركاته

الحمد لله الذى تتم بنعمته الصالحات

ضلع القائمة الأكير = 2002000
طول الونر = 2002001

 

 







التوقيع

الحمد لله الذى بنعمته تتم الصالحات

قديم 18-12-2006, 09:08 PM   رقم المشاركة : 3
عضو شرف
 
الصورة الرمزية استاذ الرياضيات

من مواضيعه :
0 مقدمة للنظم العددية
0 القسمة بطريقة هورنر
0 تجربة
0 لغز المربع العجيب
0 شرح:إيجاد طول العمودالساقط من نقطةعلى مستقيم






استاذ الرياضيات غير متصل

استاذ الرياضيات is on a distinguished road

شكراً: 472
تم شكره 337 مرة في 185 مشاركة

افتراضي


السلام عليكم ورحمة الله وبركاته

الحمد لله الذى تتم بنعمته الصالحات

ضلع القائمة الأكير = 2002000
طول الونر = 2002001

فكرة الحل نشأت من ملاحظة متتابعة طول أقصر ضلع للمثلثات االقائمة الأتية

3 , 4 , 5
5 , 12 , 13
7 , 24 , 25
9 , 40 , 41
11 , 60 , 61
13 , 84 , 85
.
.
.
2001 , س , س+1

ومنها س = 2002000 وهو طول ضلع القامة المطلوب
وطول الوتر = 2002001

شكرا للكم

 

 







التوقيع

الحمد لله الذى بنعمته تتم الصالحات

قديم 18-12-2006, 09:33 PM   رقم المشاركة : 4
عضو شرف
 
الصورة الرمزية اشرف محمد

من مواضيعه :
0 واحد على مضروب 2
0 قوية
0 المطلوب التمثيل البيانى للتغير الطردى
0 4 مسائل
0 اوجد مجموع





اشرف محمد غير متصل

اشرف محمد is on a distinguished road

شكراً: 216
تم شكره 89 مرة في 53 مشاركة

افتراضي


السلام عليكم
اقل العداد الصحيحة 3و4و5
لان المثلث المتساوى الساقين به جذر2
نفرض ان الاضلاع
2001 و2001 +س و 2001+ص
العدد 2001 من مضاعفات 3
الاضلاع (3في 667 ) و ( 3في 667 +س ) و( 3 في 667 +ص)
بالقسمة على 667
الاضلاع( 3 ) و (3+س\667) و ( 3 +ص\ 667
لكى يشابه المثلث 3و4و 5
س\667 =1 و ص\667=2
س=667 و ص=1334
الاضلاع 2001 و2001+667 و 2001 +1334
اقل ضلع2668

 

 







قديم 18-12-2006, 09:35 PM   رقم المشاركة : 5
عضو شرف
 
الصورة الرمزية اشرف محمد

من مواضيعه :
0 ضع صح او خطأ : الدالة زوجية أم فردية؟
0 حل المعادلة
0 اوجد مجموع
0 4 مرة واحدة
0 قوية





اشرف محمد غير متصل

اشرف محمد is on a distinguished road

شكراً: 216
تم شكره 89 مرة في 53 مشاركة

افتراضي


سؤال
لماذا كلمه الوتر
معروف ان الوتر اكبر ضلع

 

 







قديم 18-12-2006, 09:44 PM   رقم المشاركة : 6
عضو مجتهد
 
الصورة الرمزية محمدالزواوى

من مواضيعه :
0 فيها فكره حلوه
0 فيها فكره حلوه(9)
0 فيها فكره حلوه (5)
0 فيها فكره حلوه(7)
0 معادله فيها فكره حلوه






محمدالزواوى غير متصل

محمدالزواوى is on a distinguished road

شكراً: 0
تم شكره 4 مرة في 3 مشاركة

Wink الحل:


الاخوه الاعزاء: من المعروف ان الاطوال 3 ، 4 ، 5 هى اطوال مثلث قائم
وكذاك مضاعفات هذه الاعداد تكون مثلثات قائمه
ومن الواضح ان اصغر ضلع فى المثلث الموجود فى التمرين وهو 2001
احد مضاعفات العدد 3 ( حيث 2001 / 3=667)
اذا ضلع القائمه الثانى هو = 4 × 667 =2668
وهذا هو الضلع المطلوب
اما الوتر سيكون = 5×667 =3335
الان نتحقق من القيم مربع الوتر=(3335)^2=11122225 ـــــــــــــ(1)
مجموع مربعى ضلعى القائمه = (2001)^2+(2668)^2
= 4004001 +7118224 =11122225 ـــــــــــ(2)
من(1)، (2) المثلث ذو الاطوال 20001 و[ 2668] و 3335
مثلث قائم اطوال اضلاعه جميعها صحيحه
يعنى اقصر طول للضلع الاخر غير الوتر هو 2668
ولكم جزيل الشكر [ اخوكم محمد الزواوى]

 

 







التوقيع

omry

قديم 20-12-2006, 06:18 PM   رقم المشاركة : 7
مدير المنتدى
 
الصورة الرمزية uaemath

من مواضيعه :
0 حل مشكلة : شكرا و مشكووووورررر
0 س 8 : اتصال
0 مسائل خفيفة ذات نتائج عظيمة(2)
0 شرح - تفاضل - تكامل - فراغية
0 حول مستند وورد إلى صورة






uaemath غير متصل

uaemath is on a distinguished road

شكراً: 1,441
تم شكره 752 مرة في 288 مشاركة

افتراضي


اقتباس :
بواسطة أشرف محمد

السلام عليكم
اقل العداد الصحيحة 3و4و5
لان المثلث المتساوى الساقين به جذر2
نفرض ان الاضلاع
2001 و2001 +س و 2001+ص
العدد 2001 من مضاعفات 3
الاضلاع (3في 667 ) و ( 3في 667 +س ) و( 3 في 667 +ص)
بالقسمة على 667
الاضلاع( 3 ) و (3+س\667) و ( 3 +ص\ 667
لكى يشابه المثلث 3و4و 5
س\667 =1 و ص\667=2
س=667 و ص=1334
الاضلاع 2001 و2001+667 و 2001 +1334
اقل ضلع2668

اقتباس : المشاركة الأصلية كتبت بواسطة محمدالزواوى [ مشاهدة المشاركة ]
الاخوه الاعزاء: من المعروف ان الاطوال 3 ، 4 ، 5 هى اطوال مثلث قائم
وكذاك مضاعفات هذه الاعداد تكون مثلثات قائمه
ومن الواضح ان اصغر ضلع فى المثلث الموجود فى التمرين وهو 2001
احد مضاعفات العدد 3 ( حيث 2001 / 3=667)
اذا ضلع القائمه الثانى هو = 4 × 667 =2668
وهذا هو الضلع المطلوب
اما الوتر سيكون = 5×667 =3335
الان نتحقق من القيم مربع الوتر=(3335)^2=11122225 ـــــــــــــ(1)
مجموع مربعى ضلعى القائمه = (2001)^2+(2668)^2
= 4004001 +7118224 =11122225 ـــــــــــ(2)
من(1)، (2) المثلث ذو الاطوال 20001 و[ 2668] و 3335
مثلث قائم اطوال اضلاعه جميعها صحيحه
يعنى اقصر طول للضلع الاخر غير الوتر هو 2668
ولكم جزيل الشكر [ اخوكم محمد الزواوى]

أخي الزواوي ، لا يمكن اعتبار حلك كحل أخر و ذلك بسبب التشابه الشديد

مع حل الأخ أشرف محمد

و عليه : 3 نقاط للأخ أشرف

أخي استاذ الرياضيات ، لا يعتبر حلك الأول صحيحا لأنه لا يجيب على السؤال

و لم نعتبره خطأ كذلك لأن ليس به خطأ رياضي و عليه لن نحسم نقطة بسببه

اما حلك الثاني فلا نقاط و ذلك بسبب عدم تكامل الحل (التجريب)

بالنسبة للحل الثالث ستمنح عليه 1 نقطة كحل أخر

 

 







التوقيع

لا إله إلا أنت سبحانك إني كنت من الظالمين
لا تنسوا الضغط على هذا الرابط لمساعدة المشاريع التربوية في الدول الفقيرة:ساعد الأخرين | موقع رياضيات الإمارات|تعلم إدراج الرموز
إذا لم يظهر لك مدرج الرموز عند وضعك مشاركة أسفل الصفحة ، عليك تحميل و تنصيب الجافا :حمل من هنا

هناك قوانين جديدة للمنتديات ،اقرأها حتى لا تتعرض مواضيعك للحذف : اضغط هنا

قديم 18-12-2006, 09:48 PM   رقم المشاركة : 8
مدير المنتدى
 
الصورة الرمزية uaemath

من مواضيعه :
0 مسابقة صيف 2009 - المجموعة (5)
0 س 11 : مشتقات
0 عيدكم مبارك
0 نجوم المنتدى - يونيو 2009
0 موسوعة التكاملات






uaemath غير متصل

uaemath is on a distinguished road

شكراً: 1,441
تم شكره 752 مرة في 288 مشاركة

افتراضي


اقتباس :
سؤال
لماذا كلمه الوتر
معروف ان الوتر اكبر ضلع

لمجرد التنبيه أخي

 

 







التوقيع

لا إله إلا أنت سبحانك إني كنت من الظالمين
لا تنسوا الضغط على هذا الرابط لمساعدة المشاريع التربوية في الدول الفقيرة:ساعد الأخرين | موقع رياضيات الإمارات|تعلم إدراج الرموز
إذا لم يظهر لك مدرج الرموز عند وضعك مشاركة أسفل الصفحة ، عليك تحميل و تنصيب الجافا :حمل من هنا

هناك قوانين جديدة للمنتديات ،اقرأها حتى لا تتعرض مواضيعك للحذف : اضغط هنا

قديم 18-12-2006, 10:01 PM   رقم المشاركة : 9
مدير المنتدى
 
الصورة الرمزية uaemath

من مواضيعه :
0 المسابقة الرياضية(1)-السؤال 5
0 مسابفة صيف 2009 - الشروط
0 المتوسط الحسابي و الإنحراف المعياري
0 أقسام المنتديات
0 مسابقة أجمل حل - س6






uaemath غير متصل

uaemath is on a distinguished road

شكراً: 1,441
تم شكره 752 مرة في 288 مشاركة

افتراضي


السلام عليكم ،

استخدام خاصية ( 3 ، 4 ، 5 ) لإيجاد ( 2001 ، 2668 ، 3335 ) و ملاحظة ذلك

لا يبرهن أن 2668 هو أقصر طول ممكن بعد الـ 2001

 

 







التوقيع

لا إله إلا أنت سبحانك إني كنت من الظالمين
لا تنسوا الضغط على هذا الرابط لمساعدة المشاريع التربوية في الدول الفقيرة:ساعد الأخرين | موقع رياضيات الإمارات|تعلم إدراج الرموز
إذا لم يظهر لك مدرج الرموز عند وضعك مشاركة أسفل الصفحة ، عليك تحميل و تنصيب الجافا :حمل من هنا

هناك قوانين جديدة للمنتديات ،اقرأها حتى لا تتعرض مواضيعك للحذف : اضغط هنا

قديم 18-12-2006, 10:39 PM   رقم المشاركة : 10
عضو شرف
 
الصورة الرمزية استاذ الرياضيات

من مواضيعه :
0 سؤال جد الحل العام للمعادلة
0 أسئلة فى النظام الخماسى
0 روائع الهندسة رقم(20)
0 مغالطات رياضية
0 سؤال كثيرة حدود






استاذ الرياضيات غير متصل

استاذ الرياضيات is on a distinguished road

شكراً: 472
تم شكره 337 مرة في 185 مشاركة

افتراضي


السلام عليكم ورحمة الله وبركاته

يبدو أن طريقتى لا تصلح إلا فى حالة أصغر ضلع عدد أولى

 

 







التوقيع

الحمد لله الذى بنعمته تتم الصالحات

 

... صندوق محرر اللاتيك

« الموضوع السابق | الموضوع التالي »
( رَبَّنَا لاَ تُؤَاخِذْنَا إِن نَّسِينَا أَوْ أَخْطَأْنَا رَبَّنَا وَلاَ تَحْمِلْ عَلَيْنَا إِصْرًا كَمَا حَمَلْتَهُ عَلَى الَّذِينَ مِن قَبْلِنَا رَبَّنَا وَلاَ تُحَمِّلْنَا مَا لاَ طَاقَةَ لَنَا بِهِ وَاعْفُ عَنَّا وَاغْفِرْ لَنَا وَارْحَمْنَا أَنتَ مَوْلاَنَا فَانصُرْنَا عَلَى الْقَوْمِ الْكَافِرِينَ )


تعليمات المشاركة
لا تستطيع إضافة مواضيع جديدة
لا تستطيع الرد على المواضيع
لا تستطيع إرفاق ملفات
لا تستطيع تعديل مشاركاتك

BB code is متاحة
كود [IMG] متاحة
كود HTML معطلة


الساعة الآن 02:36 PM.


Powered by vBulletin® Version 3.8.2, Copyright ©2000 - 2024, Jelsoft Enterprises Ltd. TranZ By Almuhajir
UaeMath,since January 2003@