العضو المميز الموضوع المميز المشرف المميز
المنتدى متاح للتصفح فقط ولا يقبل المشاركات الجديدة ماشاء الله تبارك الله ماشاء الله لاقوة الا بالله المنتدى متاح للتصفح فقط ولا يقبل المشاركات الجديدة

آخر 10 مشاركات
كتب الرياضيات العربية (الكاتـب : - - الوقت: 07:41 PM - التاريخ: 05-03-2013)           »          أتيتكم ببشرى خاصه بتلميذتكم منتداي العزيز :) (الكاتـب : - آخر مشاركة : - - الوقت: 11:02 PM - التاريخ: 06-07-2012)           »          كيف نحسب بعد الأرض عن الشمس بالرياضيات (الكاتـب : - - الوقت: 05:50 AM - التاريخ: 25-06-2012)           »          تجريب اللاتيك LaTex (الكاتـب : - - الوقت: 02:37 AM - التاريخ: 22-06-2012)           »          أخلاق المسلمين (الكاتـب : - آخر مشاركة : - - الوقت: 11:57 AM - التاريخ: 20-05-2012)           »          مسألة محددات أرجو المساعدة في حلها (الكاتـب : - - الوقت: 07:52 PM - التاريخ: 16-05-2012)           »          طريقة جميله لإيجاد قيمة اللوغاريتم بدون حاسبة (الكاتـب : - آخر مشاركة : - - الوقت: 02:59 AM - التاريخ: 16-05-2012)           »          كتاب قيم عن مسابقات الأولمبياد (الكاتـب : - آخر مشاركة : - - الوقت: 01:33 AM - التاريخ: 04-12-2009)           »          س 6 : اتصال (الكاتـب : - آخر مشاركة : - - الوقت: 11:39 PM - التاريخ: 03-12-2009)           »          امتحانات + الحل للثانوية العامة - مصر - 2008 (الكاتـب : - آخر مشاركة : - - الوقت: 11:25 PM - التاريخ: 03-12-2009)


العودة   منتديات الرياضيات العربية سـاحـة المرحلــــة الثـانـويــة الشـروحـات
التعليمـــات قائمة الأعضاء التقويم Files Upload Center الراديو

البث الإذاعي الحي Join WebHost4Life.com موقع بلّغوا


 
   
أدوات الموضوع انواع عرض الموضوع
قديم 21-12-2006, 11:32 PM   رقم المشاركة : 1
عضو مؤسس
 
الصورة الرمزية حسام محمد

من مواضيعه :
0 مربع كامل
0 نظرية الأعداد (1)
0 شرح- أنواع الدرجة الثانية هندسيا
0 قوانين وطرق مختلفة لحل المعادلات
0 مربع كامل






حسام محمد غير متصل

حسام محمد is on a distinguished road

شكراً: 0
تم شكره 35 مرة في 27 مشاركة

افتراضي شرح- أنواع الدرجة الثانية هندسيا


السلام عليكم ورحمة الله وبركاته

أرجو من الأساتذة الكرام أن نتناقش فيما تمثله هذه المعادلة

حالياً ليس لدي حل لها

المعادلة هي :

ص2+س ص ــ 2س2 ــ 5س ــ ص ــ 2=0

 

 







قديم 22-12-2006, 12:58 AM   رقم المشاركة : 2
عضو مؤسس
 
الصورة الرمزية حسام محمد

من مواضيعه :
0 نهاية (1)
0 مربع ومثلث
0 الدوال المثلثية
0 شرح- أنواع الدرجة الثانية هندسيا
0 من الدرجة الثالثة (1)






حسام محمد غير متصل

حسام محمد is on a distinguished road

شكراً: 0
تم شكره 35 مرة في 27 مشاركة

افتراضي


توضيح السؤال :

هل يمكن أن تمثل المعادلة السابقة منحنياً أم اجتماع مستقيمين أم ....؟

وضّح ذلك بالشرح

 

 







قديم 22-12-2006, 02:08 AM   رقم المشاركة : 3
عضو مؤثر
 
الصورة الرمزية محمد على القاضى

من مواضيعه :
0 مسألة جميلة(95) : رباعي دائري
0 مسألة جميلة(68)
0 حلول هندسية لمسائل مثلثية واستنتاج قاعدة
0 مسألة جميلة (76)
0 رائعة (6):حل(س^2+2)^(لوس للأساس 5) =27:س>0





محمد على القاضى غير متصل

محمد على القاضى is on a distinguished road

شكراً: 26
تم شكره 49 مرة في 25 مشاركة

افتراضي


المعادلة المعطاة تمثل مستقيمان معادلتيهما : 2س + ص + 1 = 0 ،،
س - ص + 2 = 0 ونقطة تقاطعهما (-1 ، 1)

 

 







قديم 22-12-2006, 02:24 AM   رقم المشاركة : 4
عضو مؤسس
 
الصورة الرمزية حسام محمد

من مواضيعه :
0 تجربة
0 حلل إلى عوامل (3)
0 مسألة رياضية
0 برهن فى المثلث أب ج:ظاأ+ظاب+ظاج =ظاأ×ظاب×ظاج
0 شرح - البنى الجبرية






حسام محمد غير متصل

حسام محمد is on a distinguished road

شكراً: 0
تم شكره 35 مرة في 27 مشاركة

افتراضي


هي فعلاً كذلك أخي لم يكن لدي الجواب سابقاً لكني تحققت من صحتها الآن

أولاً أشكر لك اهتمامك وهنا لدينا السؤال المهم :

كيف وصلنا لهذين المستقيمين ؟

هل يمكن الوصول لذلك دون اختيار النقاط بيانياً؟

 

 







قديم 23-12-2006, 12:04 AM   رقم المشاركة : 5
عضو شرف
 
الصورة الرمزية استاذ الرياضيات

من مواضيعه :
0 مقدمة للنظم العددية
0 المعادلات فى المجموعات
0 قوانين للدوال المثلثية الزائدية
0 مغالطات رياضية
0 روائع الهندسة رقم(20)






استاذ الرياضيات غير متصل

استاذ الرياضيات is on a distinguished road

شكراً: 472
تم شكره 337 مرة في 185 مشاركة

افتراضي


السلام عليكم ورحمة الله وبركاته

الحمد لله الذى بنعمته تتم الصالحات

أى معادلة من الدرجة الثانية ذات مجهولين على الصورة

أ س2 + ب س ص + جـ ص2 + د س + هـ ص + و = صفر

حيث أ , ب , جـ , د , هـ , و معاملات حسابية

بشرط أن لا يكون أ = 0 , ب = 0 , جـ = 0
( أحدهم على الأقل غير مساوى للصفر)

تمثل ؛ إحدى الحالات الأتية

أولاً مجموعة خالية ومثال ذلك

س 2 + ص2 + 1 = 0

ثانياً نقطة وحيدة فى المستوى ومثال ذلك

( س - أ ) ^2 + ( ص - ب ) ^2 = صفر


ثالثاً زوج من المستقيمان ومثال ذلك

( أس +ب ص +ج ) ( د س + هـ ص + و) = 0

ويكون المستقيمان متطابقان إذا كان أ ÷ د = ب ÷ هـ = جـ ÷ و

ويكون المستقيمان متوازيان إذا كان (أ ÷ د) = (ب ÷ هـ) لا يساوى( جـ ÷ و)

ويكون المستقيمان متقاطعان إذا كان (أ ÷ د ) لا يساوى (ب ÷ هـ )

رابعاً قطع مخروطى ( مكافئ - ناقص - زائد )

وهناك مقولة مشهورة تقول أن :

معادلة من الدرجة الثانية ذات مجهولين على الصورة

أ س2 + ب س ص + جـ ص2 + د س + هـ ص + و = صفر

تمثل على وجه العموم قطع مخروطى ( وليس دائما لوجود الحالات الخاصة السابقة)

ويمكن تمييز نوع القطع ببحث إشارة مميز هذه المعادلة وهو المقدار

ب2 - 4 أ جـ

فإذا كان ب2 - 4 أ جـ = صفر كان القطع مكافئ

وإذا كان ب2 - 4 أ جـ < صفر كان القطع ناقص

فإذا كان ب2 - 4 أ جـ > صفر كان القطع زائد

ملاحظة هامة :

معظم الحالات الأشكال السابقة نحصل عليها
( بإستثناء المجموعة الخالية والمستقيمان المتوازيان )

من المقطع الناشئ من تقاطع مستوى مع المخروط المتولد من دوران زوج من المستقيمات المتقاطعان فى نقطة حول المستقيم المنصف الزاوية بينهما

 

 







التوقيع

الحمد لله الذى بنعمته تتم الصالحات

قديم 23-12-2006, 11:07 AM   رقم المشاركة : 6
عضو مبدع
 
الصورة الرمزية امام مسلم

من مواضيعه :
0 متفاوته أمريكانيه (3)
0 التمرين السابع عشر - سلسلة تمارين هندسة
0 ليس مجرد اختيار
0 خمسون كارتاً للألغــاز ( محلوله )
0 متفاوته أمريكانيه (5)





امام مسلم غير متصل

امام مسلم is on a distinguished road

شكراً: 8
تم شكره 66 مرة في 39 مشاركة

افتراضي


كلام معقول جداً
شكراً لك يا أستاذ الرياضيات

 

 







التوقيع

الحمد لله الذى أسبغ علينا نعمه ظاهرةً و باطنه

قديم 23-12-2006, 11:44 AM   رقم المشاركة : 7
عضو نشيط
 
الصورة الرمزية happy1967

من مواضيعه :
0 متتابعه هندسيه
0 حل معادله بسيطه
0 مغالطـــــــ فعلا جميله ــــــه
0 أثبت أن : ظا س / س < ظا ص < ص
0 داله 2007 ..........اثبت ان





happy1967 غير متصل

happy1967 is on a distinguished road

شكراً: 0
تم شكره 3 مرة في 2 مشاركة

افتراضي


شكرا اخى استاذ الرياضيات
معلومه كنت اناقشها مع اخى امام لقد اوضحتها جيدا
لك كل شكرى وتقديرى اخى العزيز
سعيد البحيرى

 

 







التوقيع

اذا لم تكن قادرا على جمع الفضائل
فلتكن فضائلك ترك الرذائل

قديم 23-12-2006, 03:33 PM   رقم المشاركة : 8
عضو مؤسس
 
الصورة الرمزية حسام محمد

من مواضيعه :
0 حلل إلى عوامل (2)
0 شرح :معادلات ديوفانتس (Diophantus Equations)
0 لطلبة الثانوية(هندسة)
0 حل المعادلة :
0 شرح -تحليل ثلاثي الحدود






حسام محمد غير متصل

حسام محمد is on a distinguished road

شكراً: 0
تم شكره 35 مرة في 27 مشاركة

افتراضي


كلام مهم جداً وتعميم لفكرة السؤال

مشكور أستاذ الرياضيات

لديّ الإضافة التالية :

انطلاقاً من المعادلة:
ص2+س ص ــ 2س2 ــ 5س ــ ص ــ 2=0

التي يمكن كتابتها بالشكل:
ص2+(س ــ 1)ص ــ 2س2 ــ 5س ــ 2=0

نحسب المميز=(س ــ 1)2 ــ 4( ــ 2س2 ــ 5س ــ 2)
=(3س+3)2

ومنه:

إما ص=(ــ س+1+3س+3)\2 =س+2

ومنه: المستقيم الأول : ص=س+2 أو س ــ ص+2=0

أو ص=(ــ س+1 ــ 3س ــ 3)\2=ــ 2س ــ 1

ومنه: المستقيم الثاني : ص=ــ 2س ــ 1 أو 2س+ص+1=0

طبعاً هذه فكرة بسيطة أمام التعميم السابق

والشكر للجميع

 

 







قديم 23-12-2006, 05:36 PM   رقم المشاركة : 9
عضو شرف
 
الصورة الرمزية استاذ الرياضيات

من مواضيعه :
0 قوانين للدوال المثلثية الزائدية
0 لغز المربع العجيب
0 القسمة بطريقة هورنر
0 مسائل الرياضيات ليدى نور
0 معادلات الدرجة الأولى بثلاث مجاهيل






استاذ الرياضيات غير متصل

استاذ الرياضيات is on a distinguished road

شكراً: 472
تم شكره 337 مرة في 185 مشاركة

افتراضي


لسلام عليكم ورحمة الله وبركاته

الحمد لله الذى بنعمته تتم الصالحات

مرحباً بالأخوة الكرام

الأستاذ إمام مسلم

والأستاذ سعيد البحيرى

والأستاذ حسام محمد

خالص شكرى و للجميع تقديرى

 

 







التوقيع

الحمد لله الذى بنعمته تتم الصالحات

قديم 23-12-2006, 11:27 PM   رقم المشاركة : 10
عضو مؤسس
 
الصورة الرمزية حسام محمد

من مواضيعه :
0 إنشاء هندسي (2)
0 فاصلة عشرية\زمنية
0 كيف ندرج الرموز الرياضية في المنتدى
0 الهندسة الفراغية (شارك معنا)
0 مسألة سهلة - ثلاثيات مرتبة






حسام محمد غير متصل

حسام محمد is on a distinguished road

شكراً: 0
تم شكره 35 مرة في 27 مشاركة

افتراضي


أهلاً بك أستاذنا

 

 







 

... صندوق محرر اللاتيك

« الموضوع السابق | الموضوع التالي »
( رَبَّنَا لاَ تُؤَاخِذْنَا إِن نَّسِينَا أَوْ أَخْطَأْنَا رَبَّنَا وَلاَ تَحْمِلْ عَلَيْنَا إِصْرًا كَمَا حَمَلْتَهُ عَلَى الَّذِينَ مِن قَبْلِنَا رَبَّنَا وَلاَ تُحَمِّلْنَا مَا لاَ طَاقَةَ لَنَا بِهِ وَاعْفُ عَنَّا وَاغْفِرْ لَنَا وَارْحَمْنَا أَنتَ مَوْلاَنَا فَانصُرْنَا عَلَى الْقَوْمِ الْكَافِرِينَ )


تعليمات المشاركة
لا تستطيع إضافة مواضيع جديدة
لا تستطيع الرد على المواضيع
لا تستطيع إرفاق ملفات
لا تستطيع تعديل مشاركاتك

BB code is متاحة
كود [IMG] متاحة
كود HTML متاحة


الساعة الآن 01:24 PM.


Powered by vBulletin® Version 3.8.2, Copyright ©2000 - 2024, Jelsoft Enterprises Ltd. TranZ By Almuhajir
UaeMath,since January 2003@